
Cryptographic Passwords and Authentication

stf

<2018-06-23 Sat>



NIST 800-63-3: Digital Authentication Guidelines 1

I Minimum length: 8

I Minimum maximum length: 64

I allow all printable ASCII characters

I allow even all UNICODE characters, emoji inclusive

I No composition rules.

1https://pages.nist.gov/800-63-3/sp800-63-3.html

https://pages.nist.gov/800-63-3/sp800-63-3.html


O�ine Dictionary Attacks

I leaked password dbs

I millions of dictionary words / second checked



Password Managers

I Do not reuse passwords

I Do not use dictionary words

I High entropy (>80bit)

(sometimes)



Online Password Managers

pro

I easy syncing

I little installation overhead

con

I privacy

I attack surface (browser+3rd party)

I centralized, juicy target

classical convenience over security trade-o�



O�ine Password Managers

pro

I control

I veri�able

con

I syncing

I user is responsible for security

classical security over convenience trade-o�



Cons of all passwords managers

I your master password is the key to the kingdom,

I o�ine bruteforce against your db

I keylogging

I many keep old user-chosen passwords, which are weak



Double Trouble

Double attack surface

I server user databases

I password storage



Crypto

magic silverbullets to the rescue \o/



SPHINX 2

2https://eprint.iacr.org/2015/1099

https://eprint.iacr.org/2015/1099


SPHINX Bene�ts

a password Store that Perfectly Hides from Itself (No eXaggeration)

I information theoretically secure password store

I manager does not know password

I manager salt independent from input/output passwords

I can use more than one "master" password



how does this work again?



Enter password

1. user enters password



User chooses random R

1. user enters password

2. "user" chooses random R



User blinds password with R

1. user enters password

2. "user" chooses random R

3. a = H(pwd)R



User sends blinded password to storage

1. user enters password

2. "user" chooses random R

3. a = H(pwd)R

4. User sends a to storage



Storage contributes its own "secret"

1. user enters password

2. "user" chooses random R

3. a = H(pwd)R

4. User sends 'a' to storage

5. Storage returns b = aK



User unblinds �nal password

1. user enters password

2. "user" chooses random R

3. a = H(pwd)R

4. User sends 'a' to storage

5. Storage returns b = aK

6. User unblinds b by b(1/R) = H(pwd)K



Security

I storage compromise: no problem

I network compromise: no problem

I o�ine dictionary against server: no problem

I storage+server compromised: o�ine dictionary against master
pwd

I does not protect against compromised user (keylogging)



libsphinx et all

I https://github.com/stef/libsphinx

I https://github.com/stef/pwdsphinx

I https://github.com/stef/websphinx-chrom

I https://github.com/stef/websphinx-firefox

I https://github.com/stef/winsphinx

I also implemented in the PITCHFORK!!!5! \o/

testers, ports to smartphones, users welcome!

https://github.com/stef/libsphinx
https://github.com/stef/pwdsphinx
https://github.com/stef/websphinx-chrom
https://github.com/stef/websphinx-firefox
https://github.com/stef/winsphinx


NIST 800-63-3: Digital Authentication Guidelines II

Server Side

I No expiration without reason (forgotten,phished,leaked)

I All passwords hashed (keyed), salted (>32bit) and stretched
(pbkdf2 10.000)

I No password hints.

I No Knowledge-based authentication.

I No SMS in 2FA



OPAQUE 3

3https://eprint.iacr.org/2018/163

https://eprint.iacr.org/2018/163


OPAQUE Init

the server

I generates and publishes public key

I generates a random salt k for user

the user or the server:

I generates public key pair

I calculates secret key K = H(pw,H(pw)k)

I encrypts user keypair and the server public key with K

�nally

I the server stores the encrypted keys



OPAQUE user initiates session

the user

I generates an ephemeral keypair and a blinding factor r

I calculates a = H(pw)r

I sends a and the public ephemeral key over to the server



OPAQUE server response

the server

I generates an ephemeral keypair

I calculates b = ak where k is the random salt from the init

I calculates a shared secret S using the long-term and ephemeral
keys

I calculates auth=HMAC(1,S)

I sends b, auth, the encrypted user keys & the public ephemeral
key over to the user



OPAQUE user �nish

the user

I calculates K by unblinding b -> H(pwd,b(1/r))

I decrypts the encrypted keys

I using the decrypted and the ephemeral keys calculates the
shared secret S

I using S calculates and veri�es auth=HMAC(1,S)

I if user needs to authenticate it sends HMAC(2,S) to server



OPAQUE Bene�ts

I forward secure

I precomputation doesn't help server compromise

I stretching happens on the client

I salt never leaves the server

I password never leaves the client

I is an AKE → shared key

cons:

I explicit user authentication is an extra message



OPAQUE in libsphinx

OPAQUE implemented in

https://github.com/stef/libsphinx

ports to PAM, ningx auth module, javascript, php, etc warmly
welcome.

https://github.com/stef/libsphinx


The End

Questions?


	Cryptographic Password and Authentication

