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Overview and goal of the talk

� Privacy in large datasets

� Possible privacy solutions

� Structural de-anonymization in social networks

– Attacks

– Defenses

– Next generation of attacks

CrySyS Lab, Budapest
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� Conclusion
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PRIVACY IN LARGE

DATASETS
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‘Natural’ sources of big data in (social) technology (e.g.)

Recommender

systems

Social networks

& media

Web tracking dbs

(profiling)
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Predicting user

behavior

$$

?

Exposing trends

Doc indexing

& search
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What is anonymity?

� One is anonymous,

who can not be 

identified within a set 

of subjects.

– Anonymity set!

– Identifying attributes 

23

42

17

Participants and their age
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– Identifying attributes 

are the same

– Point of view can be 

local or global

– Determined by the 

attacker model

6

17

The A1 anonymity set:

Bob is the one who

is 17 year old. Which one?

?
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How identifiable are we?

87% of US population is identifiable

by (216 million of 248 million):
{5 digit ZIP, gender, date of birth}

87% of US population is identifiable

by (216 million of 248 million):
{5 digit ZIP, gender, date of birth}

Sweeney, 1990
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Golle, 2000

Revisiting study: 64% of US 

population is identifiable by:
{ZIP-code, gender, date of birth}

Revisiting study: 64% of US 

population is identifiable by:
{ZIP-code, gender, date of birth}
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How identifiable are we? (2)

Work-home location pairs as

identifying information (US):

• avg. 1500 person / location cells

• 5% totally identifiable.

• avg. anonymity set size is ca. 20

Work-home location pairs as

identifying information (US):

• avg. 1500 person / location cells

• 5% totally identifiable.

• avg. anonymity set size is ca. 20

CrySyS Lab, Budapest
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Golle & Partridge, 2009

Location based services?!
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How identifiable are we? (3)

Anonymized NetFlix datasetAnonymized NetFlix dataset Public IMDb ratingsPublic IMDb ratings
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1f 64 71 a5 14 ca dd 95 4e bb

2a 35 dc 89 f8 99 dd 56 ca 42

1f 93 f5 d1 dc f1 b0 34 e8 b1

f6 43 5a 28 49 5c f3 40 fa ba

aa cf bc 49 80 26 71 29 66 f6

2d 1d ed d1 39 b8 f9 fb 20 53

de 14 96 cb a3 0b 80 52 ff 52

39 65 84 61 d3 50 a7 d3 aa 80

93 cc ca 4f 8e 3a 47 0a c6 de

fa 05 64 be 4c 59 0e 04 91 85

4c ba ba 30 91 a9 34 47 0d 2e

0f 51 26 23 fd 5c 43 1e e5 9f
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Netflix vs. IMDb

• rarely used features are identifying

• only 8 ratings identify 99% of users (2 erroneous),

• dates within a 2 week timeframe

Netflix vs. IMDb

• rarely used features are identifying

• only 8 ratings identify 99% of users (2 erroneous),

• dates within a 2 week timeframe

Narayanan & Shmatikov, 2008
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How identifiable are we? (4)

An experiment on Xing indicates that

group memberships are identifying:

• ~8m users at the time

• ca. 42% uniquely identified

• extremely small anonymity sets:

2.912 collisions for 90% of users!

An experiment on Xing indicates that

group memberships are identifying:

• ~8m users at the time

• ca. 42% uniquely identified

• extremely small anonymity sets:

2.912 collisions for 90% of users!

CrySyS Lab, Budapest
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Univisted

Visited

Univisted

Visited

Univisted

Visited

Univisted

Visited

Wondracek et al., 2010
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How identifiable are we? (5)

� Fingerprinting evolves:
– 2010: Browser fingerprint

(e.g., accuracy: 94.2%)

– 2011: System fingerprint
(works well on Windows)

– 2012: Connecting
personal devices

Firefox 23.0

Fonts: Arial,

sans-serif,

CrySyS Lab, Budapest
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personal devices

– Future: biometric
fingerprinting?

� Billions of (device) 
fingerprints in
databases
– Based on simple

characteristics

1280x1024Timezone: -60

sans-serif,

Comic Sans,

...

Eckersely, 2010

Boda et al., 2011
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How identifiable are we? (6)

• Unstructured data!

• Writing style can be structured:

• e.g., inspecting the relative frequency of ‘since’ 

and ‘because’

• many of these can enable stylometric profiling

• Unstructured data!

• Writing style can be structured:

• e.g., inspecting the relative frequency of ‘since’ 

and ‘because’

• many of these can enable stylometric profiling

CrySyS Lab, Budapest
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Results on in searching the author of a few posts:

• On 100,000 blogs, cross-context validation

• 20% of correct identification (of 3 posts)

• Improvements:

• Manual inspection of top 20 results

→ 35% success rate

• 30-35% corr. id. with 20 posts

Results on in searching the author of a few posts:

• On 100,000 blogs, cross-context validation

• 20% of correct identification (of 3 posts)

• Improvements:

• Manual inspection of top 20 results

→ 35% success rate

• 30-35% corr. id. with 20 posts

Narayanan et al., 2012
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How identifiable are we? (7)

Network alignment on temporal location 

information and social networks

• with ca. 80% recall in small nets (2012)

• up to 84% recall in ~200k users (2014)

Network alignment on temporal location 

information and social networks

• with ca. 80% recall in small nets (2012)

• up to 84% recall in ~200k users (2014)

CrySyS Lab, Budapest
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Srivatsa & Hicks, 2012

Ji et al., 2014



How identifiable are we? (8)

?
Genomic privacyGenomic privacy

Smart meteringSmart metering

CrySyS Lab, Budapest
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?
Wearable techWearable tech
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Sum of these problems

� Basic problem:

population of 7 billion �

33 bits of information

� Low similarity of items

– Large dimensionality of 

data

CrySyS Lab, Budapest
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data

– Heavy tail distribution of 

used attributes

– Easy feature selection!

Narayanan & Shmatikov, 2008
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Pros

� Publishing (anonymous) 

databases is good for

research

– We have types and sizes of 

data never before.

Cons

� Previous techniques fail 

(because of sparsity)

� Breakability of 

anonymization schemes? 

Provability?

Sum of these problems (2)

CrySyS Lab, Budapest
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data never before. Provability?

� What about wholesale

surveillance?

– One should prepare for

attackers with strong

auxiliary data!
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ANY SOLUTION CANDIDATES?

K-ANONYMITY AND DIFFERENTIAL

PRIVACY
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K-anonymity

� Definition

– In a database a set of attributes can be considered as quasi 

identifiers. The database achieves k-anonymity if for all records 

there are at least (k-1) other rows with the same quasi identifier.

� Methods: supression or generalization

� Attributes can be: explicit id, quasi id, sensitive

CrySyS Lab, Budapest
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Name Birth date City

John 1980-01-31 New York

Emily 1976-06-25 Flint

Bob 1985-09-05 New York

Dave 1973-02-07 South Bend

...

Employee database

Birth date City Diagnosis

1985-09-05 New York Stroke

1973-02-07 South Bend -

1980-01-31 New York Flu

1976-06-25 Flint HIV

...

Healthcare database



Name Birth date City

John 1980-01-31 New York

Emily 1976-06-25 Flint

Bob 1985-09-05 New York

Dave 1973-02-07 South Bend

...

Employee database

Birth date City Diagnosis

198* New York Stroke

197* South Bend -

198* New York Flu

197* Flint HIV

...

Healthcare database

K-anonymity (2)

?

Better: P(„John has flu”)=1 � P(„John has flu”)= ½

CrySyS Lab, Budapest
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Name Birth date City

John 1980-01-31 New York

Emily 1976-06-25 Flint

Bob 1985-09-05 New York

Dave 1973-02-07 South Bend

...

Employee database

Birth date City Diagnosis

198* New York Stroke

197* [small city] -

198* New York Flu

197* [small city] HIV

...

Healthcare database

18

Even better: probs are now ½ for all! (2-anonymity)



K-anonymity (3) – homogeneity attack

HH

k=3

CrySyS Lab, Budapest
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ε-differential privacy

� Definition

– A randomized algorithm A is ε-diferentially private if for all two 

datasets D1 and D2 that differ in single row, for all S outcomes of 

A the following holds:

� In practice?

( )( ) ( )( )SDAPeSDAP ∈⋅≤∈ 21

ε

CrySyS Lab, Budapest
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� In practice?

– Changing one element in the datasets will not change the 

outcome significantly, that someone could tell the differing value.

• E.g., by adding noise to results.

– Provable privacy!

– Not very good with some types of data, some types of uses, or 

with small datasets.
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ε-differential privacy (2)

Alice 4.2

Bob 5.9

Cathy 5.2

Diana 6.9

Ellen 5.7

Alice 4.2

-

Cathy 5.2

Diana 6.9

Ellen 5.7

Alice 4.5

Bob 5.1

Cathy 4.41

Diana 6.2

Ellen 5.7

Alice 3.0

-

Cathy 3.7

Diana 7.5

Ellen 7.5

Differentially private approach:

let’s add some noise of unif(-2,2)

Query #1

avg blood sugar level

of the group? 

Query #2

avg blood sugar level

of female members? 

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás 21

Ellen 5.7

Avg: 5.58

Ellen 5.7

Avg: 5.50

Blood sugar level of Bob?
5*5.58–4*5.5 = 5.9

Ellen 5.7

Avg: 5.23

Ellen 7.5

Avg: 5.46

Blood sugar level of Bob?
5*5,23–4*5,46 = 4,3

Err. ~7% Err. <1%

Err. ~27%



Differential privacy sounds cool, right?

CrySyS Lab, Budapest
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CrySyS Lab, Budapest
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STRUCTURAL DE-

ANONYMIZATION IN SOCIAL

NETWORKS
23



Data perturbation and sanitization

Perturbed data

#1

#135
fm, 14

#16
fm, 45

Sanitized data

#1

#135
fm, 14

#16
fm, 45

Original data

Bob

Emily
(fm, 14)

Betty
(fm, 45)

CrySyS Lab, Budapest
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#1
male, 48#12

fm, 16

#97
male, 45

#7
male, 17

#20
fm, 41

#1
male, 48#12

fm, 16

#97
male, 45

#7
male, 17

#20
fm, 41

Bob
(male, 48)Helen

(fm, 16)

Dave
(male, 45)

Greg
(male, 17)

Cathy
(fm, 41)
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Anonimized graph, Gtar

(anonimized export, e.g., Twitter)

Attacker model

Auxiliary information, Gsrc

(a public crawl, e.g., Flickr)

CrySyS Lab, Budapest
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RepublicanDemocratic

25

Narayanan & 

Shmatikov, 2009



Anonimized graph, Gtar

(anonimized export, e.g., Twitter)

Attacker model (2)

Auxiliary information, Gsrc

(a public crawl, e.g., Flickr)

Global match

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás

Narayanan & 

Shmatikov, 2009

Relative match (local reid.)

1. Init = seeding (global)

2. Iterate = propagation (local)
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Large-scale re-identification

� Underlying concepts

work on large social

networks

– Auxiliary data:

Flickr (3,3m ns, 53m es)

– Target (anon.) data:

CrySyS Lab, Budapest
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– Target (anon.) data:

Twitter (224k ns, 8,5m es)

– Ground truth: 27k nodes

(name/user/loc.)

� Results:

– 30% TP, only 12% FP

– (Init: 150 highdeg. seeds)

27



Initialization?

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás 28



Initialization? (2)

CrySyS Lab, Budapest
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http://gulyas.info/upload/GulyasG_SESOC14.pdf



Details on the propagation phase

� Do ∀vi∈VSRC until we have convergence:

1. Identified neighbors: {v1,…,vk} ∈ VSRC, mapped to {v1’,…,vk’} ∈ VTAR,

e.g. µ(v1)=v1’

a. Select N={vu1
,…,vum

} ∈ VTAR from nbrs({v1’,…,vk’})

b. Calculate score: S={su1
,…,sum

}

2. If vi’ is an outstanding candidate in S, do a reverse match checking by swaping the

datasets GTAR and GSRC (and the mapping)

3. If vi is the reverse best-match, set µ(vi)=vi’

m 5
G : G :

Narayanan & 

Shmatikov, 2009

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás

A

B

C

D

e

f

g h
i

j

k

l

m

A’

B’

C’

D’

6

7

10

11

12

13

5

8 9

GSRC: GTAR:
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Details on the propagation phase (2)

� Score calculation:

� Cosine similarity:

� Eccentricity check:

ji

ji

ji

VV

VV
)v,v(CosSim

⋅
=

I

j

ji

ji

V

VV
)v,v(Score

I
=

( ) ( ){ }( )
( )S

Smax\SmaxSmax
)S(tyEccentrici

σ

−
=

m 5
G : G :

Narayanan & 

Shmatikov, 2009
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A’

B’

C’
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6
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5
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GSRC: GTAR:



???

CrySyS Lab, Budapest
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TACKLING STRUCTURAL DE-

ANONYMIZATION

32



Possible solutions? Safebook.

a

bfe

CrySyS Lab, Budapest
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e

c

b

DHT

a

h(b)?

f



Possible solutions? Data sanitization. (2)

CrySyS Lab, Budapest
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http://people.cs.vt.edu/danfeng/papers/social-anon.pdf



The friend-in-the-middle model

Beato et al., 2013

the proxying friend

CrySyS Lab, Budapest
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• Basic principle: some nodes act as a proxy (hiding edges)

• Cooperative: users choose proxy nodes (both trusted)

• Results:

• Proves 10% of users are enough (perhaps less)

• On a quite sparse network (easier to defend �)

• Requires cooperation: 3 nodes need to agree per edge



(Privacy-Enhancing) Identity management

� Partial identity:

– Subset of the 
attributes of the 
global identity

– Invoked by different 
roles and contexts

experience

studies

abilities

address

salary

credit card

financial data

Clauß et al., 2005

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás

roles and contexts

– Can have 
pseudonyms

– Linkability of partial 
identites and 
actions

36

address

Global and partial identities

of John Doe

birth date

health status

medical

history



Idea: using identity management? (2)

Anonimized graph, Gtar

(anonimized export, e.g., Twitter)

Auxiliary information, Gsrc

(a public crawl, e.g., Flickr)

CrySyS Lab, Budapest
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Identity separation

Gulyas, 2014



Idea: using identity management? (3)

Epinions (75k), 

Slashdot (82k),

LiveJournal (66k)

Step 1: anonymized network

Step 2: perturbation

d
a

ta
A

n
o

n
y
m

iz
e

d

Structure

overlaps:

CrySyS Lab, Budapest
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Step 3: simulating

identity separation

P
u

b
lic

 d
a

ta
A

n
o

n
y
m

iz
e

d

d
a

ta

overlaps:

αV=0.5, 
αE=0.75

ground truth



Non-cooperative identity separation?

� Splitting nodes and redistributing edges uniformly (basic model)

Creating Y=2 new

vertices

from one, and sorting

edges

with ½ probability to

each.

CrySyS Lab, Budapest
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Recall rate: percent of correctly re-identified nodes.

each.



Non-cooperative identity separation? (2)

� Splitting nodes and redistributing edges uniformly (basic model)

Disclosure rate: what the attacker learns.

(i.e., amount of edges currently)

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás 40

Over nodes with

identity separation!
Over all nodes!



Non-cooperative identity separation? (3)

� Interesting finding:

– Only for Y=2

– Nodes with identity

separation had higher

recall rate than others

– Caused by using non-

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás

– Caused by using non-

idsep nodes for

seeding

� Conclusion:

– Natural choice � bad

implications on privacy

– Use Y=2+ ☺
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Tackling the attack: on the network level

� Splitting nodes, redistributing edges uniformly,
while some may be subjected to deletion (best model)

CrySyS Lab, Budapest
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No cooperation between users Users with highest degree cooperate



Network level protection: there is a problem!

CrySyS Lab, Budapest
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Tackling the attack: on the personal level

Basic model, 2 identities
Basic model, 5 identities

(results ordered by frequency)

CrySyS Lab, Budapest
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K-anonymity?

c=2

CrySyS Lab, Budapest
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K-anonymity? (2)

CrySyS Lab, Budapest
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y-identity model

� It works simply, but:

– tackling different 

attackers need 

different strategies

� It can be proven there 

is a one-fits-all 

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás

is a one-fits-all 

strategy:

– use 1/y probs,

– there are some 

extension,

– and some constraints.
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CrySyS Lab, Budapest
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NEXT ATTACKS ON SOCIAL 

DE-ANONYMIZATION?

48



Principles apply to other contexts also

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás

M
A

C
 a

d
d

re
ss
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Is this the top? (3)

CrySyS Lab, Budapest
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CrySyS Lab, Budapest
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CONCLUSION
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Conclusions

� Technology providing vast amount of data is here 

– but we are not ready

– How do we detect privacy leakeges?

– How to design privacy friendly services?

(and how to convince busniess men to do so ☺)

– How do we protect privacy?

CrySyS Lab, Budapest

www.crysys.hu © Gábor Görgy Gulyás

– How do we protect privacy?

– How can we evaluate protection schemes?

– ...

� Can we handle big data technology somehow? 

Or have we yet passed the point of safe return?
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Thank you for your attention!

Any questions?

Gábor György Gulyás

gulyas.info // @GulyasGG

Laboratory of Cryptography and System Security (CrySyS)

Budapest University of Technology and Economics

www.crysys.hu
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