

Big Data Privacy

Gábor György Gulyás gulyas.info // @GulyasGG Laboratory of Cryptography and System Security (CrySyS) Budapest University of Technology and Economics www.crysys.hu

Overview and goal of the talk

- Privacy in large datasets
- Possible privacy solutions
- Structural de-anonymization in social networks
 - Attacks
 - Defenses
 - Next generation of attacks
- Conclusion

PRIVACY IN LARGE DATASETS

CrySyS Lab, Budapest www.crysys.hu

'Natural' sources of big data in (social) technology (e.g.)

What is anonymity?

- One is anonymous, who can not be identified within a set of subjects.
 - Anonymity set!
 - Identifying attributes are the same
 - Point of view can be local or global
 - Determined by the attacker model

Participants and their age

The A₁ anonymity set:

Bob is the one who is 17 year old. Which one?

How identifiable are we?

Sweeney, 1990

87% of US population is identifiable by (216 million of 248 million): {5 digit ZIP, gender, date of birth}

Revisiting study: 64% of US population is identifiable by: {ZIP-code, gender, date of birth}

Golle, 2000

How identifiable are we? (2)

Work-home location pairs as identifying information (US):

- avg. 1500 person / location cells
- 5% totally identifiable.
- avg. anonymity set size is ca. 20

Location based services?!

Golle & Partridge, 2009

CrySyS Lab, Budapest www.crysys.hu

© Gábor Görgy Gulyás

Anonymized NetFlix dataset

Public IMDb ratings

28	89	40	10	e5	f9	41	07	3f	8c	
ee	09-	3d	71	54	85	83	43	4e	04	
1f	64	71	a5	14	са	dd	95	4e	bb	
2a	35	dc	89	f 8	99	dd	56	са	42	
1f	93	f5	d1	dc	f1	b0	34	e8	b1	
f6	43	5a	28	49	5c	f3	40	fa	ba	
aa	cf	bc	49	80	26	71	29	66	f6	
5a	d9	10-	7a	b8	27	ea	74	6f	72	
50	b3	ce	8b	ee	d9	65	92	17	f5	
Q1	80	20	ъЮ	c A	60	52	00	ъ1	01	

 2d
 1d
 ed
 d1
 39
 b8
 f9
 fb
 20
 53

 de
 14
 96
 cb
 a3
 0b
 80
 52
 ff
 52

 39
 55
 84
 61
 d3
 50
 a7
 d3
 aa
 80

 93
 cc
 ca
 4f
 8e
 3a
 47
 0a
 26
 de

 fa
 05
 64
 be
 4c
 59
 0e
 04
 91
 85

 4c
 ba
 ba
 30
 91
 a9
 34
 47
 0d
 2e

 0f
 51
 26
 23
 fd
 5c
 43
 1e
 e5
 9f

 37
 8a
 d4
 7d
 64
 0a
 8a
 60
 e1
 26

 d0
 31
 38
 a0
 eb
 7d
 bd
 52
 2a
 a6

 8a
 30
 0a
 c3
 86
 dd
 4d
 16
 20
 76

</tabr?>

Netflix vs. IMDb

- rarely used features are identifying
- only 8 ratings identify 99% of users (2 erroneous),
- dates within a 2 week timeframe

Narayanan & Shmatikov, 2008

How identifiable are we? (4)

An experiment on Xing indicates that **group memberships** are identifying:

- ~8m users at the time
- ca. 42% uniquely identified
- extremely small anonymity sets:
 2.912 collisions for 90% of users!

	M Plugging the CSS History ×
Univisted Visited	Plugging the CSS History Leak Sid Stamm G7 Mar 31 2010 Privacy isn't always easy. Were close to landing some changes in the Firefox development tree that will fix a privacy leak that browsers have been struggling with for some time. Were really excited about this fix, we hope other browsers will follow suit. It's a tough problem to fix, though, so of d like to describe how we ended up with this sapproach
ondracek et al., 2010	History Sniffing Links can look different on web sites based on whether or not you've visited the page they reference. You've probably seen this before: in some cases, visited

CrySyS Lab, Budapest

Μ

© Gábor Görgy Gulyás

How identifiable are we? (5)

- Fingerprinting evolves:
 - 2010: Browser fingerprint (e.g., accuracy: 94.2%)
 - 2011: System fingerprint (works well on Windows)
 - 2012: Connecting personal devices
 - Future: biometric fingerprinting?
- Billions of (device) fingerprints in databases
 - Based on simple characteristics

How identifiable are we? (6)

- Unstructured data!
- Writing style can be structured:
 - e.g., inspecting the relative frequency of 'since' and 'because'
 - many of these can enable stylometric profiling

Results on in searching the author of a few posts:

- On 100,000 blogs, cross-context validation
- 20% of correct identification (of 3 posts)
- Improvements:
 - Manual inspection of top 20 results
 - \rightarrow 35% success rate
 - 30-35% corr. id. with 20 posts

Narayanan et al., 2012

CrySyS Lab, Budapest www.crysys.hu

How identifiable are we? (7)

Network alignment on **temporal location information and social networks**

- with ca. 80% recall in small nets (2012)
- up to 84% recall in ~200k users (2014)

Srivatsa & Hicks, 2012 Ji et al., 2014

CrySyS Lab, Budapest www.crysys.hu

How identifiable are we? (8)

Genomic privacy

Wearable tech

Sum of these problems

- Basic problem: population of 7 billion → 33 bits of information
- Low similarity of items
 - Large dimensionality of data
 - Heavy tail distribution of used attributes
 - Easy feature selection!

Narayanan & Shmatikov, 2008

Sum of these problems (2)

Pros

- Publishing (anonymous) databases is good for research
 - We have types and sizes of data never before.

Cons

- Previous techniques fail (because of sparsity)
- Breakability of anonymization schemes? Provability?
- What about wholesale surveillance?
 - One should prepare for attackers with strong auxiliary data!

ANY SOLUTION CANDIDATES? K-ANONYMITY AND DIFFERENTIAL PRIVACY

K-anonymity

- Definition
 - In a database a set of attributes can be considered as quasi identifiers. The database achieves k-anonymity if for all records there are at least (k-1) other rows with the same quasi identifier.
- Methods: supression or generalization
- Attributes can be: explicit id, quasi id, sensitive

Name	Birth date	City
John	1980-01-31	New York
Emily	1976-06-25	Flint
Bob	1985-09-05	New York
Dave	1973-02-07	South Bend

Employee database

Birth dateCityDiagnosis1985-09-05New YorkStroke1973-02-07South Bend-1980-01-31New YorkFlu1976-06-25FlintHIV<td colspan="3" col

Healthcare database

K-anonymity (2)

Emp	loyee database			Healt	hcare database	9
Name	Birth date	City		Birth date	City	Diagnosis
John	1980-01-31	New York	~ ~ ~	198*	New York	Stroke
Emily	1976-06-25	Flint		197*	South Bend	-
Bob	1985-09-05	New York	\mathbf{X}	198*	New York	Flu
Dave	1973-02-07	South Bend		197*	Flint	HIV
	Better: P("J	lohn has flu")	=1 →	P("John ha	s flu")= ½	

Employee database

Healthcare database

Name	Birth date	City		Birth date	City	Diagnosis
John	1980-01-31	New York		198*	New York	Stroke
Emily	1976-06-25	Flint		197*	[small city]	-
Bob	1985-09-05	New York		198*	New York	Flu
Dave	1973-02-07	South Bend		197*	[small city]	HIV
	Even bette	er: probs are	now	1/2 for all! (2-	anonymity)	

CrySyS Lab, Budapest www.crysys.hu

K-anonymity (3) – homogeneity attack

ε-differential privacy

- Definition
 - A randomized algorithm A is ε -differentially private if for all two datasets D_1 and D_2 that differ in single row, for all S outcomes of A the following holds:

$$P(A(D_1) \in S) \le e^{\varepsilon} \cdot P(A(D_2) \in S)$$

- In practice?
 - Changing one element in the datasets will not change the outcome significantly, that someone could tell the differing value.
 - E.g., by adding noise to results.
 - Provable privacy!
 - Not very good with some types of data, some types of uses, or with small datasets.

ε-differential privacy (2)

Query #1 avg blood sugar level of the group?

Alice	4.2
Bob	5.9
Cathy	5.2
Diana	6.9
Ellen	5.7
Avg:	5.58

Query #2 avg blood sugar level of female members?

Alice	4.2
-	
Cathy	5.2
Diana	6.9
Ellen	5.7
Avg:	5.50

Blood sugar level of Bob? 5*5.58-4*5.5 = 5.9 Differentially private approach:

let's add some noise of unif(-2, 2)

Alice	4.5	
Bob	5.1	
Cathy	4.41	
Diana	6.2	
Ellen	5.7	
Avg:	5.23	

Err. ~7%

Err. <1%

Blood sugar level of Bob? 5*5,23-4*5,46 = 4,3

Err. ~27%

Differential privacy sounds cool, right?

Rappor is the 2nd real-life differential privacy deployment I've heard of cnet.com/news/how-googl... (after Onthemap onthemap.ces.census.gov)

4 ti 🛨 🕶

How Google tricks itself to protect Chrome user privacy By CNET @CNET

An open-source project called Rappor uses randomly muddled data to let Google gather information about people's software usage while keeping individuals' behavior private.

STRUCTURAL DE-ANONYMIZATION IN SOCIAL NETWORKS

Data perturbation and sanitization

Attacker model

Anonimized graph, G_{tar} (anonimized export, e.g., Twitter)

Attacker model (2)

Large-scale re-identification

- Underlying concepts work on large social networks
 - Auxiliary data:
 Flickr (3,3m ns, 53m es)
 - Target (anon.) data:Twitter (224k ns, 8,5m es)
 - Ground truth: 27k nodes (name/user/loc.)
- Results:
 - 30% TP, only 12% FP
 - (Init: 150 highdeg. seeds)

Initialization?

Initialization? (2)

http://gulyas.info/upload/GulyasG_SESOC14.pdf

Details on the propagation phase

- Do $\forall v_i \in V_{SRC}$ until we have convergence:
 - Identified neighbors: $\{v_1, \ldots, v_k\} \in V_{SRC}$, mapped to $\{v_{1'}, \ldots, v_{k'}\} \in V_{TAR}$, 1. e.g. $\mu(v_1) = v_1$
 - Select N={ $v_{u_1},...,v_{u_m}$ } $\in V_{TAR}$ from nbrs({ $v_{1'},...,v_{k'}$ }) а.
 - Calculate score: $S = \{s_{u_1}, \dots, s_{u_m}\}$ b.

www.crysys.hu

- 2. If $v_{i'}$ is an outstanding candidate in S, do a reverse match checking by swaping the datasets G_{TAR} and G_{SRC} (and the mapping)
- 3. If v_i is the reverse best-match, set $\mu(v_i)=v_{i'}$

Narayanan & Shmatikov, 2009

Details on the propagation phase (2)

TACKLING STRUCTURAL DE-ANONYMIZATION

Possible solutions? Safebook.

Possible solutions? Data sanitization. (2)

http://people.cs.vt.edu/danfeng/papers/social-anon.pdf

The friend-in-the-middle model

Beato et al., 2013

- Basic principle: some nodes act as a proxy (hiding edges)
- Cooperative: users choose proxy nodes (both trusted)
- Results:
 - Proves 10% of users are enough (perhaps less)
 - On a quite sparse network (easier to defend ⊗)
 - Requires cooperation: 3 nodes need to agree per edge

(Privacy-Enhancing) Identity management

- Partial identity:
 - Subset of the attributes of the global identity
 - Invoked by different roles and contexts
 - Can have pseudonyms
 - Linkability of partial identites and actions

Idea: using identity management? (2)

CrySyS Lab, Budapest www.crysys.hu

Idea: using identity management? (3)

Step 1: anonymized network

Non-cooperative identity separation?

Splitting nodes and redistributing edges uniformly (basic model)

Non-cooperative identity separation? (2)

Splitting nodes and redistributing edges uniformly (basic model)

Non-cooperative identity separation? (3)

- Interesting finding:
 - Only for Y=2
 - Nodes with identity separation had higher recall rate than others
 - Caused by using nonidsep nodes for seeding
- Conclusion:
 - Natural choice → bad implications on privacy
 - Use Y=2+ ☺

Tackling the attack: on the network level

 Splitting nodes, redistributing edges uniformly, while some may be subjected to deletion (best model)

Network level protection: there is a problem!

Tackling the attack: on the personal level

Basic model, 2 identities

Basic model, 5 identities (results ordered by frequency)

K-anonymity?

K-anonymity? (2)

y-identity model

- It works simply, but:
 - tackling different attackers need different strategies
- It can be proven there is a one-fits-all strategy:
 - use 1/y probs,
 - there are some extension,
 - and some constraints.

NEXT ATTACKS ON SOCIAL DE-ANONYMIZATION?

Principles apply to other contexts also

Is this the top? (3)

CONCLUSION

CrySyS Lab, Budapest www.crysys.hu

© Gábor Görgy Gulyás

Conclusions

. . .

- Technology providing vast amount of data is here
 but we are not ready

 - How do we detect privacy leakeges?
 - How to design privacy friendly services?
 - (and how to convince busniess men to do so ⁽²⁾)
 - How do we protect privacy?
 - How can we evaluate protection schemes?
- Can we handle big data technology somehow? Or have we yet passed the point of safe return?

Thank you for your attention! <u>Any questions?</u>

Gábor György Gulyás gulyas.info // @GulyasGG Laboratory of Cryptography and System Security (CrySyS) Budapest University of Technology and Economics www.crysys.hu

References

- Latanya Sweeney: Uniqueness of simple demographics in the US population. LIDAP-WP4. Carnegie Mellon University, Laboratory for International Data Privacy, Pittsburgh, PA (2000).
- Philippe Golle: Revisiting the uniqueness of simple demographics in the US population. Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
- Philippe Golle, Kurt Partridge: On the anonymity of home/work location pairs. *Pervasive Computing*. Springer Berlin Heidelberg, 2009. 390-397.
- Arvind Narayanan, Vitaly Shmatikov: Robust de-anonymization of large sparse datasets. Security and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008.
- Arvind Narayanan, Vitaly Shmatikov: De-anonymizing social networks. Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 2009.
- Gilbert Wondracek et al.: A practical attack to de-anonymize social network users. Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010.

References (2)

- Peter Eckersley: How unique is your web browser? Privacy Enhancing Technologies. Springer Berlin Heidelberg, 2010.
- Károly Boda et al.: User tracking on the Web via cross-browser fingerprinting. *Information Security Technology for Applications*. Springer Berlin Heidelberg, 2012. 31-46.
- Mudhakar Srivatsa, Mike Hicks: Deanonymizing mobility traces: Using social network as a side-channel. Proceedings of the 2012 ACM conference on Computer and communications security. ACM, 2012.
- Arvind Narayanan et al.: On the feasibility of internet-scale author identification. Security and Privacy (SP), 2012 IEEE Symposium on. IEEE, 2012.
- Filipe Beato, Mauro Conti, Bart Preneel: Friend in the Middle (FiM): Tackling De-Anonymization in Social Networks, 2013.
- Gábor György Gulyás, Sándor Imre: Hiding Information in Social Networks from De-anonymization Attacks by Using Identity Separation, 2013.

References (3)

- Clauß et al.: Privacy enhancing identity management: protection against re-identification and profiling, 2005.
- Gábor György Gulyás, Sándor Imre: Analysis of Identity Separation Against a Passive CliqueBased De-anonymization Attack, 2011.
- Gábor György Gulyás, Sándor Imre: Measuring Importance of Seeding for Structural De-anonymization Attacks in Social Networks, 2014.
- Ji et al.: Poster: Optimization based Data De-anonymization, 2014.
- Cutillo, Leucio Antonio, Refik Molva, and Thorsten Strufe.
 "Safebook: A privacy-preserving online social network leveraging on real-life trust."*Communications Magazine, IEEE* 47.12 (2009): 94-101.
- Gábor György Gulyás: Protecting Privacy Against Structural Deanonymization Attacks in Social Networks, dissertation, 2014.
 Most images from: pixabay.com licenced under CC0 Public Domain