
Elliptic curves in cryptography
with applications to digital asset ownership

Balázs Kőműves

Falkstenen AB

Budapest, 17 February 2014



Outline

This is an expository talk about three loosely connected subject:

I elliptic curves

I public-key cryptography

I digital money (in particular, bitcoin)



Some history

substitution ciphers ∼500 BC

“ROT13” ∼70 BC Julius Caesar

elliptic integrals ∼ 1700–1750 Fagnano; Euler

elliptic functions 1829 Abel; Jacobi

Weierstrass ℘ function 1862 Weierstrass

Enigma machines ∼ 1920–1950

(more-or-less RSA) (1973) (Clifford Cocks et al)

public key cryptography 1976 Diffie & Hellmann

RSA 1977 Rivest, Shamir & Adleman

ElGamal cryptosystem 1984 ElGamal

Elliptic Curve Crypto 1985 Miller; Kolbitz

cryptographic hash functions ∼ 1990

bitcoin 2009 Satoshi Nakamoto



Elliptic curves

What is an elliptic curve?

I smooth cubic plane curve (with a base point)

I smooth genus 1 curve (with a base point)

I y2 = x3 + ax+ b
(“short Weierstrass form”; char(F) 6= 2, 3 and 4a3 + 27b2 6= 0)

I 1 dimensional abelian variety

Etimology / history:

I arc length of an ellipse

I elliptic integrals

I the inverse problem: elliptic functions

I elliptic curves



Pictures of elliptic curves over R



Arc length of an ellipse
An ellipse: y = q

√
1− x2 with q > 0. The slope at (x, y):

dy

dx
=

−qx√
1− x2

Let’s write down the arc length:

S(t) =

∫ t

0

√
dx2 + dy2 =

∫ t

0

√
1 + (dy/dx)2 dx =

=

∫ t

0

√
1− x2 + q2x2

1− x2
dx

=: E
(
t ;
√

1− q2
)

For q = 1 (circle), this simplifies; otherwise it is not an elementary
function (not even for t = 1). E(x; k) is called “incomplete elliptic
integral of the second kind, Jacobi’s form”.

Generic elliptic integral:
∫
R(x,

√
P (x))dx, where P (x) is a cubic or quartic

polynomial without double roots, and R(x, y) is a rational function.



Weierstrass ℘ function
Let’s fix two complex numbers ω1, ω2 ∈ C which generate the
lattice

Λ = {nω1 +mω2 : n,m ∈ Z } ⊂ C.

An elliptic function is a meromorphic function which is periodic
wrt. the lattice Λ.

Let us use Λo = Λ\{0} for brevity. The Weierstrass ℘ function is
defined by

℘(z) =
1

z2
+
∑
ω∈Λo

[
1

(z − ω)2
− 1

ω2

]
It is meromorphic function, clearly periodic wrt. the lattice Λ (thus
an elliptic function), an even function: ℘(z) = ℘(−z), and has
second order poles exactly at the points of Λ.

Fact: ℘(z) is the universal elliptic function: Any elliptic function is a rational

function of ℘(z) and ℘′(z).



The differential equation
Introduce the quantities:

g2 = 60
∑
ω∈Λo

ω−4

g3 = 140
∑
ω∈Λo

ω−6

The Laurent series expansion of ℘(z):

℘(z) = z−2 +
g2

20
z2 +

g3

28
z4 +O(z6)

Theorem: The Weierstrass ℘ function satisfies the following
differential equation:

[℘′(z)]2 = 4℘(z)3 − g2 ℘(z)− g3

Proof: Comparing the poles of the two sides, we can conclude that their

difference is a periodic entire function, and thus a constant (which can be

readily computed as 0).



Conclusion I. (inverse problem)

Integrating the differential equations, we can see that for the
elliptic integral

u(y) = −
∫ ∞
y

ds√
4s3 − g2s− g3

we have y = ℘(u(y)), thus

℘ = u−1.

That is, the Weierstrass ℘ function is the inverse of this elliptic
integral. “Proof”:

(℘−1)′(y) =
1

℘′(℘−1(y))
=

1√
4y3 − g2y − g3

Similarly, other elliptic functions solve the inverse problems for
other types of elliptic integrals (hence the name).



Conclusion II. (elliptic curve)

From the differential equations, we can see directly that the
mapping

C → C/Λ → P2

z 7→ z mod Λ 7→
[
4℘(z) : 4℘′(z) : 1

]
is well-defined (actually, an isomorphism) between the complex
torus C/Λ and the elliptic curve

y2 = x3 + ax+ b

with a = −4g2 and b = −16g3.

Moreover, Λ 7→ (g2, g3) is an isomorphism between the moduli
space of lattices and the moduli space of elliptic curves (whatever
that means...).



The group law on elliptic curves

The torus C/Λ is naturally a group (it inherits the complex
addition), so it shouldn’t be too surprising that elliptic curves also
have a group structure. Actually it is rather surprising :)

Definitions (for the Weierstrass form):

I identity element: The point at infinity (denoted by O)

I inverse: mirroring wrt. the X axis

I addition: if P , Q and R are on a straight line, we declare
P +Q+R = O

Group laws:

I identity satisfies what it should (trivial)

I addition is commutative (trivial)

I addition is associative (nontrival!)



Addition on elliptic curves



Symmetric key cryptography

The two parties have a shared secret key; they can then encrypt
and decrypt messages using this key.

With modern symmetric key encryption standards, it is infeasible
for an attacker to guess the message without knowing the secret
key.

The big issue: How to agree on a secret key? In practice, this
needs meeting in person (often inpractical) and at a secure
location (can be inpractical, or even impossible). Also, we want
machines to communicate safely, too.

Nevertheless, symmetric key encryption algorithms are useful
components of larger crypto systems.



Asymmetric (or public) key cryptography

Each party has a pair of corresponding keys: one which is public
(say, on published on their homepage) and one which is private
(only a single person knows it).

Main applications:

I Estabilishing a shared secret without meeting (key exchange)

I Send messages which only the intended recepient can decrypt
(encryption)

I Prove that a message was really written by the person who
claims it (signature)

From these basic building blocks, a huge set of really interesting
applications can be built.

Public-key crypto is widely used on the internet today: HTTPS,
SSL, PGP, Bitcoin, etc...



Public key cryptography, II.

Public-key cryptosystems are based on problems which are easy to
compute in one direction, but hard to compute in the other
direction:

I factorization of the product of two large prime numbers (RSA)

I discrete logarithm (ElGamal)

I elliptic curve discrete logarithm (ECC)

Discrete logarithm: Fix a finite cyclic group G of order n and a
generator G ∈ G.

I private key: a random number d ∈ [1, n− 1] ⊂ N
I public key: the group element Q = dG ∈ G

The idea is that it is very hard to determine d from Q (for
appropriate choices of G). Elliptic curve crypto: Let G be an
appropriately chosen elliptic curve over a finite field Fq.



Elliptic curves over finite fields

Elliptic curves make sense over different fields: C, R, Q, Fq, etc.
To be able to do cryptography, we need computable objects; thus
the choice of finite fields Fq. In practice either q = 2m or a prime
q = p.

The safety of ECC depends on the hardness of the elliptic curve
discrete logarithm problem. Not all curves are created equal!

An example, here is the standardized curve called secp256k1 (this is the curve
used by Bitcoin):

I the field is Fp with p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

I the curve equation is y2 = x3 + 7 (that is, a = 0 and b = 7)

I the number of points on the curve n is also a prime, and “close” to p (to
be more precise, p− 2129 < n < p− 2128)

I since n is prime, the group is cyclic; thus any element (except the
infinity) will do as the generator G

I but there is a concrete, randomly-looking G in the standard



A picture of y2 = x3 + 7 over F59

Remark: p ≈ 2256 ≈ 1077 ≈ no. of elementary particles in the universe



Key length comparison

The primary advantage of ECC is that we can have shorter keys for
equivalent security:

Security level RSA key length ECC key length ratio

80 1024 160-223 5–6
112 2048 224-255 8–9
128 3072 256-283 11–12
192 7680 384-511 15–20
256 15360 512-571 27–30

The shorter key length can be actually important in practice:

I embedded devices with limited resources (smartcards, etc)

I large number of signatures: both bandwidth and storage can
be important (bitcoin)



Diffie-Hellmann key exchange

Recall that a key pair (d,Q) consists of

I a private key, which is a random number d ∈ [1, n− 1] ⊂ N
I a public key, which is the group element Q = dG ∈ G

Let there be two parties: Alice and Bob, with key pairs (dA, QA)
and (dB, QB). They can compute a shared secret S ∈ G as follows:

dAQB = dA(dBG) = (dAdB)G︸ ︷︷ ︸
S

= dB(dAG) = dBQA

Alice can knows dA, so she can compute the leftmost version; Bob
knows dB, so he can compute the rightmost version. But nobody
else knows neither dA or dB, thus S is their secret.

They can then proceed and use S for any purpose, for example as
the key of a symmetric encryption scheme.



Public-key encryption

Alice wants to send a message to Bob, but wants to make sure
that nobody else can read it.

This can be implemented as an application of the Diffie-Hellmann
key exchange:

1. Alice generates an ephemeral key pair (dE , QE)

2. she then computes a shared secret S = dEQB

3. computes a symmetric key k = k(S) from S

4. encrypts the message m with the key k

5. sends QE and the ciphertext ck(m) to Bob

On the other side: Bob computes S = dBQE , then k = k(S), and
decrypts the message. Nobody else knows neither dE or dB.

In practice it is a bit more complicated, but that’s the idea.



Intermezzo - Hash functions
A hash function H is a function

H :

∞⋃
k=0

{0, 1}k → {0, 1}m

with a fixed m (usually m ∈ {32, 64, 128, 160, 256, 512}), such
that the output looks more-or-less random, and changing any
single bit of the input completely changes the output.

A hash function is called cryptographic, if it is practically
impossible for any given hash h to figure out an input x such that
H(x) = h, unless we already know x (“preimage resistance”); it is
also desirable to be impossible to find two inputs x1 6= x2 with
H(x1) = H(x2) (“collision resistance”).

Hash functions (both cryptographic and non-cryptographic) are
very widely used in computer science. For cryptographic hash
functions there are international standards, for example the SHA2
family.



Elliptic Curve Digital Signature Algorithm
Alice writes a message m, and wants to prove that she wrote it.
She already has key pair (dA, QA), and people accept that the
public key QA in fact belongs to her.

Construction of the signature:

1. compute a hash z = HASH(m) ∈ [1, n− 1] of the message m

2. generate an ephemeral key pair: k and Qk = kG = (x, y)

3. let r = (x mod n) ∈ Zn

4. let s = k−1(z + rdA) ∈ Zn

5. the signatures is (r, s) ∈ Zn × Zn

Verification of the signature:

1. compute z = HASH(m) ∈ [1, n− 1] as before

2. compute u = s−1z ∈ Zn and v = s−1r ∈ Zn

3. compute the curve point (x, y) = Q = uG+ vQA ∈ G
4. the signature is valid iff x = r.



Representations of elliptic curve points

There are many different representations of elliptic curves:

I Weierstrass affine coordinates A2

I Weierstrass projective coordinates P2

I Weierstrass weighted projective coordinates P(2, 3, 1)

I Montgomery form

I Hessian form

I Jacobian form

I Edwards form

I etc...

Representation matters because of efficiency! And possibly also
different security properties.



Computations with elliptic curves, I.

How to compute dQ ∈ G efficiently, with d ∈ Zn and Q ∈ G?

Answer: “fast exponentation”! Write d in binary form:
d =

∑m−1
i=0 di2

i, where di ∈ {0, 1}.

dQ =

(
m−1∑
i=0

di2
i

)
·Q =

m−1∑
i=0

di(2
iQ) =

m−1∑
i=0

diQi

where Qi = 2iQ can be computated by repeated doubling:
Q0 = Q, Q1 = 2Q0, Q2 = 2Q1, Q3 = 2Q2, etc...

Thus we need addition and doubling (which is a special case of
addition, but needs to be handled separately anyway).



Elliptic curve addition and doubling in pictures



Elliptic curve addition and doubling in Weierstrass form

In any field F (char(F) 6= 2, 3), for two points P 6= Q 6= O on the
elliptic curve y2 = x3 + ax+ b, with coordinates P = (xp, yp) and
Q = (xq, yq), it is straightforward (?) to calculate the coordinates
of P +Q = R = (xr, yr) and 2P = U = (xu, yu):

s =
yq−yp
xq−xp

t =
3x2

p+a

2y

xr = s2 − (xp + xq) xu = t2 − 2xu
yr = −yp − s(xr − xp) yu = −yp − s(xu − xp)

Here s resp. t are the slopes of the secant resp. tangent lines.



Projective coordinates

The problem: Each addition or doubling needs a division in Fq,
which is slow; each exponentiation needs a lot of additions and
doublings; and we need several exponentiation to do cryptography.

The divisions are the bottleneck. How to make divisions faster?
Answer: Don’t do divisions!

Using projective coordinates, we only need one division at the end,
when we convert back to affine coordinates. Using weighted
projective coordinates P(2, 3, 1) is even better (somewhat less
multiplications/additions):

[x : y : z] = [λ2x : λ3y : λz] ∈ P(2, 3, 1).

Other representations can be even more efficient.



Digital assets

Physical objects exist in single copies, thus ownership is
more-or-less clear. In contrast, digital objects (information) can be
readily copied in any number of copies. So how can we ensure that
a digital asset is owned by a single entity at a given point of time?

I centralized database of ownership (eg. banks, clearing houses)
I requires trust in the central authority
I single point of failure
I currently rather expensive (high fees)

I decentralized ledger
I how do people agree on what exactly is in the ledger?
I how to prevent double-spending?

Bitcoin’s solution:

I digitally signed transactions

I consensus on the ledger via vote-by-CPU-power



Bitcoin

Bitcoin is a decentralized digital currency protocol.

I bitcoin addresses correspond to private/public key pairs
(more precisely, addresses are hashes of public keys)

I addresses can hold amounts of “coins”

I transactions “spend” the output(s) of previous transaction(s)
I a transaction specifies how its output(s) can be spend in the

future
I typical transcation: send the coins to one or more address(es)
I the spending condition: the next spender(s) must prove that

they own the private key(s) corresponding to these addreses

I transactions are stored in the public ledger (which is a
decentralized database)

I it’s the the set of transactions which is fundamental - the
“coins” are just invariants.



Bitcoin transaction example, part I.

I expect income from two sources:

I I sold a book to a Alice for 0.3 BTC

I I made a bet with Bob, and won 0.2 BTC

I generate two key-pairs (d1,2, Q1,2) and derive the corresponding
addresses A1,2. Give the address A1 to Alice and the address A2

to Bob. They send me the agreed amounts. Two transactions T1,2

will appear in the ledger:

I T1 says that 0.3 BTC can be spent by anybody who can prove
that they know d1

I T2 says that 0.2 BTC can be spent by anybody who can prove
that they know d2

This means that I “own” 0.5 BTC alltogether (since nobody else
knows d1,2).

Next, let’s say I want to buy a bottle of whisky for 0.4 BTC!



Bitcoin transaction example, part II.

To send 0.4 BTC for the address of the whisky shop Aw, I need to
craft a transaction which “spends” the outputs of the previous
transactions T1 and T2, sends 0.4 BTC of it to the whisky shop,
and sends the remaining 0.1 BTC back to me (usually to a freshly
generated address A3)

The transaction T is signed with the private keys corresponding to
the addresses A1 and A2, to prove that they belong to me.


